Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Microbiol ; 77: 381-402, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713453

ABSTRACT

For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.


Subject(s)
Fermented Foods , Microbiota , Humans
2.
Ecol Evol ; 13(4): e9954, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038523

ABSTRACT

Of the boreal- and Arctic-breeding North American shorebirds that migrate south through the Caribbean, most individuals continue farther south. However, for many species, some individuals remain beyond the southbound migration period (i.e., throughout the temperate winter and/or summer). This variation among individuals adds complexity to observation data, obscures migration patterns, and could prevent the examination of the use of different Caribbean regions by various shorebird species during migration and in the nonmigratory seasons. Here, we present a novel method that leverages a well-established statistical approach (generalized additive models) to systematically identify migration phenology even for complex passage migrant species with individuals that remain beyond migration. Our method identifies the active migration period using derivatives of a fitted GAM and then calculates phenology metrics based on quantiles of that migration period. We also developed indices to quantify oversummering and overwintering patterns with respect to migration. We analyzed eBird data for 16 North American shorebird species as they traveled South through the insular Caribbean, identifying separate migratory patterns for Cuba, Puerto Rico, Guadeloupe, Aruba, Bonaire, Curaçao, and Trinidad and Tobago. Our results confirm past reports and provide additional detail on shorebird migration in the Caribbean, and identify several previously unpublished regional patterns. Despite Puerto Rico being farther north and closer to continental North America, most species reached Puerto Rico later than other regions, supporting a long-standing hypothesis that migration strategy (transcontinental vs. transoceanic) leads to geographic differences in migration timing. We also found distinct patterns of migration curves, with some regions and species consistently having either symmetrical or skewed curves; these differences in migration curve shape reflect different migration processes. Our novel method proved reliable and adaptable for most species and serves as a valuable tool for identifying phenological patterns in complex migration data, potentially unlocking previously intractable data.

3.
Ecology ; 104(2): e3915, 2023 02.
Article in English | MEDLINE | ID: mdl-36336890

ABSTRACT

As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.


Subject(s)
Asclepias , Butterflies , Animals , Herbivory , Larva , Asclepias/chemistry , Asclepias/metabolism , Latex/analysis , Latex/chemistry , Latex/metabolism , Plants/metabolism , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...